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Introduction

Motivation. The Dbrain Is made up of many cell types that
communicate through the release of a variety of neurotransmitters to
control brain function and behavior. Genetically encoded fluorescent
iIndicators are widely used to measure neurotransmitter release on
specific locations and cell types to dissect neural circuits.

Challenge. Due to technical limitations, prior work has largely been
limited to studying at most two signals at once in each brain region.

Solution. To enable multiplexed fluorescent measurements across
many brain areas In vivo, we developed a hyperspectral fiber
photometry system. The system records spectrally resolved emission
at flve excitation wavelengths. Hyperspectral measurements are
unmixed to obtain individual sources of signal using a custom
constrained non-negative matrix factorization algorithm.

Results. We have performed simultaneous measurements of
dopamine, acetylcholine, and calcium In the ventral striatum of mice
performing a reward-based decision-making task. Preliminary
analysis reveals distinct dynamics of each of these signals
modulated by behavioral states and outcomes.
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Data acquisition and preprocessing

methods for efficient spectral unmixing

Simultaneous dopamine, acetylcholine,
and calcium imaging during behavior
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Spectral unmixing using
non-negative matrix factorization

Non-negative matrix factorization H: sources x time

learns a factorization of the data
matrix Y in terms of low-rank,
non-negative matrices A and H.

A[1*n+i,:] = w[1]s[i,:]

Sources modeled are the
excitation lasers, indicators, as
well as autofluorescence (e.g.
from NADH and FAD).
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argmin |Y - AH|{2
s.t. A > 0, H >= 0;

Objective function L is minimized
through projected gradient
descent.

A and H are composed as above
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A: (wavelengths x lasers) x sources

s[i,:] = nx1 where n is number of wavelengths
w[1l] = scalar coefficient for the 1*" laser

- set to 1-H[@,:] (free fraction)

Dynamic foraging task
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